Lesson 5. Work Scheduling Models

Example 1. Postal employees in Simplexville work for 5 consecutive days, followed by 2 days off, repeated weekly. Below are the minimum number of employees needed for each day of the week:

Day	Employees needed
Monday (1)	7
Tuesday (2)	8
Wednesday (3)	7
Thursday (4)	6
Friday (5)	6
Saturday (6)	4
Sunday (7)	5

Write a linear program that determines the minimum total number of employees needed. You may assume that fractional solutions are acceptable.

DVs:
$$x_1 = \#$$
 employees who work on days 1-5 (Mm-Fri)
 $x_2 = \#$ employees who work on days 2-6 (Tue-Sat)
 x_3, x_4, x_5, x_6, x_4 defined similarly

minimize
$$z_1 + z_2 + z_3 + z_4 + z_5 + z_6 + z_7$$
 (fold # employers)
subject to z_1 + $z_4 + z_5 + z_6 + z_7 \ge 7$ (Mom)
 $z_1 + z_2$ + $z_5 + z_6 + z_4 \ge 8$ (Tue)
 $z_1 + z_2 + z_3$ + $z_6 + z_7 \ge 7$ (Wed)
 $z_1 + z_2 + z_3 + z_4 + z_7 \ge 7$ (Wed)
 $z_1 + z_2 + z_3 + z_4 + z_7 \ge 7$ (Thu)
 $z_1 + z_2 + z_3 + z_4 + z_7 \ge 7$ (Sun)
 $z_1 + z_2 + z_3 + z_4 + z_7 \ge 7$ (Sun)
 $z_1 + z_2 + z_3 + z_4 + z_7 \ge 7$ (Sun)
 $z_1 + z_2 + z_3 + z_4 + z_7 \ge 7$ (Sun)

Example 2. At the Rusty Knot, tables are set and cleared by runners working 5-hour shifts that start on the hour, from 5am to 10am. Runners in these 5-hour shifts take a mandatory break during the 3rd hour of their shifts. For example, the shift that starts at 9am ends at 2pm, with a break from 11am-12pm. The Rusty Knot pays \$7 per hour for the shifts that start at 5am, 6am, and 7am, and \$6 per hour for the shifts that start at 8am, 9am, and 10am. Past experience indicates that the following number of runners are needed at each hour of operation:

Hour	Number of runners required
5am-6am	2
2 6am-7am	3
3 7am-8am	5
4 8am-9am	5
⁵ 9am-10am	4
6 10am-11am	3
11am-12pm	6
12pm-1pm	4
1pm-2pm	3
2pm-3pm	2

Formulate a linear program that determines a cost-minimizing staffing plan. You may assume that fractional solutions are acceptable.

DVs:
$$x_1 = \#$$
 runners who work the shift starting at Sam (Sam-10am) $x_2 = \#$ runners who work the shift starting at Gam (Gam-Illam) x_3, x_4, x_5, x_6 defined similarly

minimize $7(S)(x_1 + x_2 + x_5) + 6(S)(x_4 + x_5 + x_6)$ (Interest)

subject to $x_1 \ge 2$ (Sam-6am)

 $x_1 + x_2 \ge 3$ (Gam-8an)

 $x_1 + x_3 \ge 5$ (Ram-9an)

 $x_1 + x_3 + x_4 \ge 5$ (Ram-9an)

 $x_1 + x_2 + x_4 + x_5 \ge 4$ (10am-10an)

 $x_2 + x_3 + x_5 + x_6 \ge 3$ (10am-11an)

 $x_3 + x_4 + x_6 \ge 6$ (11am-12pm)

 $x_4 + x_5 \ge 4$ (12pm-1pn)

 $x_5 + x_6 \ge 3$ (2pm-3pn)

 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_6 \ge 0$ (nonnegativity)