Lesson 5. Work Scheduling Models

Example 1. Postal employees in Simplexville work for 5 consecutive days, followed by 2 days off, repeated weekly. Below are the minimum number of employees needed for each day of the week:

Day	Employees needed
Monday (1)	7
Tuesday (2)	8
Wednesday (3)	7
Thursday (4)	6
Friday (5)	6
Saturday (6)	4
Sunday (7)	5

Write a linear program that determines the minimum total number of employees needed. You may assume that fractional solutions are acceptable.

Potential DVs: $\quad y_{1}=$ \# employees who work on day 1 y_{2}, \ldots, y_{7} defined similarly
how do we mure
employs work for
5 consecutive days,
then 2 days off?

DVd. $\quad x_{1}=$ \# employees who work on days 1-5 (Mo n-Fr) $x_{2}=$ \# employee who work on days 2-6 (Twe-Sat) $x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ defined similarly

$$
\begin{aligned}
& \text { minimize } x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \text { (total \# employees) } \\
& \text { subject to } x_{1}+x_{4}+x_{5}+x_{6}+x_{7} \geqslant 7 \text { (Mon) } \\
& x_{1}+x_{2}+x_{5}+x_{6}+x_{7} \geqslant 8 \quad \text { (Tue) } \\
& x_{1}+x_{2}+x_{3} \quad+x_{6}+x_{7} \geqslant 7 \quad \text { (Wed) } \\
& x_{1}+x_{2}+x_{3}+x_{4} \quad+x_{7} \geqslant 6 \quad \text { (Thu) } \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \geqslant 6 \quad \text { (Fri) } \\
& x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geqslant 4 \text { (Sat) } \\
& x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \geqslant 5 \quad(\sin) \\
& x_{1} \geqslant 0, x_{2} \geqslant 0, x_{3} \geqslant 0, x_{4} \geqslant 0 \\
& x_{5} \geq 0, x_{6} \geqslant 0, x_{7} \geqslant 0 \\
& \text { (nonnegativity) }
\end{aligned}
$$

Example 2. At the Rusty Knot, tables are set and cleared by runners working 5-hour shifts that start on the hour, from Sam to 10am. Runners in these 5-hour shifts take a mandatory break during the 3rd hour of their shifts. For example, the shift that starts at 9 am ends at 2 pm , with a break from 1lam-12pm. The Rusty Knot pays $\$ 7$ per hour for the shifts that start at $5 \mathrm{am}, 6 \mathrm{am}$, and 7 am , and $\$ 6$ per hour for the shifts that start at $8 \mathrm{am}, 9 \mathrm{am}$, and 10 am . Past experience indicates that the following number of runners are needed at each hour of operation:

	Hour	Number of runners required
1	$5 \mathrm{am}-6 \mathrm{am}$	2
2	$6 \mathrm{am}-7 \mathrm{am}$	3
3	$7 \mathrm{am}-8 \mathrm{am}$	5
4	$8 \mathrm{am}-9 \mathrm{am}$	5
5	$9 \mathrm{am}-10 \mathrm{am}$	4
6 10am-11am	3	
11am-12pm	6	
$12 \mathrm{pm}-1 \mathrm{pm}$	4	
$1 \mathrm{pm}-2 \mathrm{pm}$	3	
$2 \mathrm{pm}-3 \mathrm{pm}$	2	

Formulate a linear program that determines a cost-minimizing staffing plan. You may assume that fractional solutions are acceptable.

$$
\begin{aligned}
& \text { Dis: } \quad x_{1}=\text { \# runners who work the shift starting at } 5 \text { am (5am-10am) } \\
& x_{2}=\text { \#nunvers who work the shift stating at } 6 \mathrm{am} \text { (} 6 \text { am- } 11 \mathrm{am} \text {) } \\
& x_{3}, x_{4}, x_{5}, x_{6} \text { defined similarly } \\
& \text { minimize } 7(5)\left(x_{1}+x_{2}+x_{3}\right)+6(5)\left(x_{4}+x_{5}+x_{6}\right) \quad \text { (total cost) } \\
& \text { subject to } \\
& x_{1} \geqslant 2 \\
& \text { (5am-6am) } \\
& x_{1}+x_{2} \geqslant 3 \\
& \text { (} 6 \mathrm{am}-7 \mathrm{am} \text {) } \\
& x_{2}+x_{3} \geqslant 5 \\
& \text { (7am-8an) } \\
& x_{1}+x_{3}+x_{4} \geqslant 5 \\
& (8 a m-9 a m) \\
& x_{1}+x_{2}+x_{4}+x_{5} \geqslant 4 \quad(9 a m-10 \mathrm{am}) \\
& x_{2}+x_{3}+x_{5}+x_{6} \geqslant 3 \\
& \text { (} 10 \mathrm{am}-11 \mathrm{~cm} \text {) } \\
& x_{3}+x_{4}+x_{6} \geqslant 6 \\
& \text { (} 11 \text { am-12pm) } \\
& x_{4}+x_{5} \geqslant 4 \\
& x_{5}+x_{6} \geqslant 3 \\
& \text { (} \left.12 p m-1 p_{n}\right) \\
& \text { (1pm-2pm) } \\
& x_{6} \geqslant 2 \\
& (2 p m-3 p m) \\
& x_{1} \geqslant 0, x_{2} \geqslant 0, x_{3} \geqslant 0, \\
& x_{4} \geqslant 0, x_{5} \geqslant 0, x_{6} \geqslant 0
\end{aligned}
$$

